A New Probabilistic Model for Recognizing Signs with Systematic Modulations

نویسندگان

  • Sylvie C. W. Ong
  • Surendra Ranganath
چکیده

This paper addresses an aspect of sign language (SL) recognition that has largely been overlooked in previous work and yet is integral to signed communication. This work is the most comprehensive to-date on the recognition of the complex variations in sign appearances due to grammatical processes (inflections). These processes systematically modulate both the temporal and spatial dimensions of a root sign word to convey information in addition to lexical meaning. We propose a novel dynamic Bayesian network – the Multichannel Hierarchical Hidden Markov Model (MH-HMM)– as a modelling and recognition framework for continuously signed sentences that include modulated signs. The MHHMM models the hierarchical, sequential and parallel organization in signing while requiring synchronization between parallel data streams at sign boundaries. Experimental results using particle filtering for decoding demonstrate the feasibility of using the MH-HMM for recognizing inflected signs in continuous sentences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص مدولاسیون فاصله تکرار پالس های راداری

In a dense modern electronic warfare environment, there are a lot of radar signals. Pulse repetition intervals of signals received from radars can have various modulations and levels. It is very important to recognize these modulations and to determine their levels in electronic warfare support systems. In this paper, a method of estimating PRI levels is proposed. The extensions of the biased a...

متن کامل

A Facility Location Problem with Tchebychev Distance in the Presence of a Probabilistic Line Barrier

This paper considers the Tchebychev distance for a facility location problem with a probabilistic line barrier in the plane. In particular, we develop a mixed-integer nonlinear programming (MINLP) model for this problem that minimizes the total Tchebychev distance between a new facility and the existing facilities. A numerical example is solved to show the validity of the developed model. Becau...

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

A mathematical model for sustainable probabilistic network design problem with construction scheduling considering social and environmental issues

Recent facility location allocation problems are engaged with social, environmental and many other aspects, besides cost objectives.Obtaining a sustainable solution for such problems requires development of new mathematical modeling and optimization algorithms. In this paper, an uncapacitated dynamic facility location-network design problem with random budget constraints is considered. Social i...

متن کامل

Three New Systematic Approaches for Computing Heffron-Phillips Multi-Machine Model Coefficients (RESEARCH NOTE)

This paper presents three new systematic approaches for computing coefficient matrices of the Heffron-Phillips multi-machine model (K1, …, K6). The amount of computations needed for conventional and three new approaches are compared by counting number of multiplications and divisions. The advantages of new approaches are: (1) their computation burdens are less than 73 percent of that of convent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007